Στερεώνουμε μία λεπτή και άκαμπτη ΑΓ ράβδο μάζας Μ = 6 kg και μήκους ℓ = 1 m με μπουλόνι και παξιμάδι στο ένα της άκρο Α έτσι ώστε να ισορροπεί σε οριζόντια θέση. Στο άλλο της άκρο της ράβδου Γ με τη βοήθεια δεύτερου οριζόντιου άξονα υπάρχει τροχαλία μάζας Μ2 = 2 kg και ακτίνας R = 0,2 mόπου γύρω της έχουμε τυλίξει αβαρές σκοινί και στο άκρο του οποίου κρατάμε σώμα M3 = 4 kgόπως φαίνεται στο διπλανό σχήμα. Την χρονική στιγμή t = 0 αφήνουμε το σώμα μάζας Μ3ελεύθερο να κινηθεί με την επίδραση του βάρους του. Το σκοινί ξετυλίγεται χωρίς να ολισθαίνει πάνω στην τροχαλία η οποία μπορεί να περιστρέφεται χωρίς τριβές γύρω από τον οριζόντιο άξονα που διέρχεται από το σημείο Γ της οριζόντιας ράβδου και το κέντρο της τροχαλίας. Η τροχαλία είναι λεία στη εσωτερική της πλευρά και δεν υπάρχουν τριβές ανάμεσα στην ράβδο και της τροχαλία.
Την χρονική στιγμή t1 = 1 s κόβουμε το νήμα και ταυτόχρονα ξεσφίγγουμε το μπουλόνι στο άκρο Α ώστε η ράβδος να μπορεί πλέον να περιστρέφεται χωρίς τριβές γύρω από τον δεύτερο οριζόντιο άξονα.
Να βρεθούν:
α. Το μέτρο της στροφορμής, της τροχαλίας γύρω από τον οριζόντιο άξονα Γ μετά το κόψιμο του νήματος.
β. Η μέγιστη κινητική ενέργεια του συστήματος ράβδος τροχαλία.
γ. Η συνολική στροφορμή του συστήματος γύρω από το άκρο Α όταν το σύστημα έχει την μέγιστη κινητική του ενέργεια.
ΠΗΓΗ ΥΛΙΚΟΝΕΤ
ΠΗΓΗ ΥΛΙΚΟΝΕΤ
Αυτό το σχόλιο αφαιρέθηκε από τον συντάκτη.
ΑπάντησηΔιαγραφή